
Performance Optimisation
Part 3: 32-bits
by Bob Swart

Back in the November 1995
and January 1996 issues I

investigated tools and techniques
to improve the speed of 16-bit
Delphi 1.0 applications. Now, with
the release of Delphi 2.0, it’s time
to take a look at 32-bit specific
issues.

Delphi 2.0
Before we even start to think about
32-bit performance optimisation,
we need to check out Delphi 2.0’s
compiler options. Although com-
piler options have less impact than
a bad algorithm, choosing the
wrong ones can seriously slow
down your code and expand your
total code size.

My personal project options for
Delphi 2.0 are shown in Figure 1.
Note the checked Default, which
means that these options are now
default for every new project in
Delphi on my machine.

Compared to Delphi 1.0 there are
a few new things. There is now an
Optimization option. Frankly, I
don’t know why you should want to
have this one turned off. It only
takes a fraction longer to compile
and link than without it, so why not
use it all the time? Another change
is the Aligned record fields
option, which will align fields
within records to 32-bit bounda-
ries. In Win32 land, this field align-
ment means faster execution
compared to non-alignment, since
DWORD-sized items on DWORD ad-
dresses are accessed much faster
than on DWORD-odd addresses. Note
that you must use this option with
care if you’re porting Delphi 1.0
code over to 2.0, since the record
layout may change, which is espe-
cially harmful if you’re reading or
writing files that contain these
(previously non-aligned) records.

The Stack frames option forces
the compiler to generate stack
frames on all procedures and

functions. Using this option will
slow down your performance, but
on the other hand may enhance
debugging capabilities.

Another new compiler directive
is Huge strings, a local switch
directive, which controls the use of
long string types. This $H directive
switches the meaning of the
reserved word string, when used
alone in a type declaration. With
$H+ a string refers to a new, longer
counted string type called
AnsiString. This is the default
setting. With $H- a string refers to
a 255-character string (or the
ShortString type), as in Delphi 1.0.

In Delphi 1.0 we could define
typed constants, of the form

const X: Integer = 42;

Delphi 2.0 now sees these defini-
tions as non-changeable, and we
must use

var X: Integer = 42;

to define pre-initialised variables.
To make sure any old Delphi 1.0

code which uses typed constants
that are changed in other places in
the code still compiles, we need to
set the Assignable typed constants
or $J+ option.

Finally, the Show hints and Show
warnings options will only help you
while writing code. They may iden-
tify that you’ve declared variables
that are never used, or assigned a
negative value to a Word and many
more.

Linker Options
Apart from compiler options, we
can also set linker options. A much
simpler dialog, as shown in Figure
2 (over the page).

Delphi 2.0 uses a new 32 bit link-
ing technology which also includes
several optimisations. The new
linker is 20% to 50% faster than
previously because of a new unit
caching scheme. In addition, EXEs
are 20% to 25% smaller than before.

Finally, Delphi 2.0 supports the
OBJ file format, so you can (try to)
share code between Delphi 2.0 and
C/C++, in addition to being able to
create and share DLLs as before.

➤ Figure 1

May 1996 The Delphi Magazine 17

In Delphi 1.0 there was also an
option Optimize for size and load
time in the linker page. Note that on
some machines in some situations
this may sometimes lead to an
erroneous disk full message when
there is actually plenty disk space
free. The fix in this case is to de-
select this option and run the
stand-alone program W8LOSS.EXE
on the compiled program instead
(the linker uses the W8LOSS.DLL).

In Delphi 2.0 this option has
disappeared from the linker page.
It’s been fixed and is now always
done (remember that Delphi 2.0
now shares the same optimising
back-end with Borland C++).

If we develop from the IDE, we
can easily obtain the current set-
tings of the compiler directive by
typing Ctrl O O in edit-mode,
resulting in the current settings
being pasted at the beginning of
the source, for example:

{$A+,B-,D-,F-,G+,I+,K+,L-,P+,
 Q-,R-,S+,T+,U-,V-,W-,X+,Y-}

We can then change them to our
liking and also make sure that a
re-compile on another user’s
system (with perhaps other com-
piler options set in the IDE) still
yields the same results. You can
also view the options in the
project’s .OPT file for Delphi 1.0, or
.DOF file for Delphi 2.0.

Delphi 2.0 Optimisations
The new 32-bit native code com-
piler achieves its performance
increase by using a number of new
code optimisation techniques.
Unfortunately, we cannot select
one or more of these techniques on
an individual basis: it’s all or noth-
ing, depending on the Optimization
switch setting. The techniques
used include register optimisa-
tions, call stack overhead elimina-
tion, common sub-expression
removal and loop induction vari-
ables, which result in faster
performance for much code.

Register Optimisations
Heavily used variables and pa-
rameters will automatically be
placed into registers, reducing the
number of machine instructions

required to load, access and store
a variable. This results in much
faster code since there is no need
to load variables from memory into
registers. This optimisation is done
automatically by the compiler with
no need to specify that certain
variables or parameters should be
placed in registers. The compiler
also automatically performs vari-
able lifetime analysis in order to be
able to re-use registers. For exam-
ple, if a variable I is used exclu-
sively in one section of code and a
variable J is used exclusively in a
later section of code, the compiler
will use a single register for both I
and J.

Call Stack
Overhead Elimination
When possible, parameters passed
to functions or procedures will also
be placed in CPU registers. Not
only does this eliminate the mem-
ory access similar to the register
optimisation I described earlier,
but it also means that there is no
need to set up a stack frame in
which to store the values tempo-
rarily. This eliminates additional
instructions to create and destroy
the stack frame so that function
calls are as efficient as possible. In
practice I have found it important
to minimise the number of argu-
ments to functions and procedures
to enable the compiler to pass
them all in registers. If you have

more than, say, four or five parame-
ters, the chances are high that the
compiler won’t find enough free
registers, so it needs to set up a
stack frame after all.

Eliminating
Common Sub-Expressions
As the compiler translates com-
plex mathematical expressions, it
will ensure that any common sub-
expressions, that is computations
which would be performed more
than once, will be eliminated. This
allows us to write code in a manner
that is clear and easy to read, know-
ing that the compiler will automat-
ically reduce it to its most compact
and efficient form. Very helpful!

Loop Induction Variables
The compiler automatically uses
loop induction variables as a way
to speed up access to arrays or
strings within loops. If a variable is
used only to index into an array, for
example in a for loop, the compiler
will induce the variable, eliminating
multiplication operations and re-
placing them with a pointer which
is incremented to access items in
the array. In addition, if the
variable size is a 1, 4 or 8, Intel scale
indexing is used to provide
additional performance benefits.

Code Elimination
Hey! Will the compiler remove my
code? Well, yes, if you’ve written

➤ Figure 2

18 The Delphi Magazine Issue 9

code that is not used the optimis-
ing compiler can decide to remove
lines that have no effect.

Note that this is different from
removing dead code, as this code
is not dead (it can be reached) it
just doesn’t have any effect!

For example, in the program
shown in Figure 3, the last line
before the end is removed from the
executable when we have optimi-
sation enabled. This means we still
can set a breakpoint to it, but it
won’t get triggered! Fortunately,
the Delphi IDE will give us a
warning when we try to run this
program as shown in Figure 4.

Note that we will get to the break-
point on the line with the string
assignment. And we didn’t get a
warning about it either. So it seems
that there’s a lot going on behind
the scenes of string assignments
that we may need to explore on
another day...

Finding Bottle-Necks
As with 16-bit programs, you must
never think you know where per-
formance bottle-necks are in your
code. Always measure with some
kind of tool. Unfortunately, there is
no Turbo Profiler we can use to
profile our 32-bit Delphi applica-
tions (for Delphi 1.0 we could use
the Turbo Profiler from Borland
C++ 4.5x, but there is no 32-bit
profiler yet, even with BC++ 5.0).

For 16-bit Windows applications
the GetTickCount API gives us the
number of milliseconds since
Windows was started. The accu-
racy of this API, however, is only
55ms, as it is updated 18.2 times
each second (just like the real
mode system clock). Hence, we
should use GetTickCount only for
very rough measurements.

From the 16-bit MMSYSTEM.DLL
we can use the timeGetTime func-
tion (at index 607), which returns a
LongInt. This API is accurate to one
millisecond, so can be used for fine
measurements.

These two APIs only show the
total amount of time that has
elapsed during a certain operation,
without taking into account the
time that other applications may
have consumed during this time
period). For truly insightful

measuring, we can use the function
TimerCount from TOOLHELP.DLL,
which tells us the time spent only
in our virtual machine.

The GetTickCount function is also
available in the Win32 API and is
identical to the GetCurrentTime
function. Note that the
GetTickCount and GetMessageTime
functions actually return different
times. GetMessageTime gives the
Windows time when the given mes-
sage was created, not the current
Windows time.

The 32-bit version of timeGetTime
retrieves the system time, in milli-
seconds. The system time is again
the time elapsed since Windows
was started. There is also another
32-bit API to do roughly the same
thing: timeGetSystemTime. The only
difference is that the latter uses
the MMTIME structure to return the
system time. The timeGetTime
function has less overhead. Note
that the value returned by the
timeGetTime function is a DWORD
value (we should use a Longint).

When using timeGetTime on
Windows NT the default precision
can be five milliseconds or more,
depending on the machine. You

can use the timeBeginPeriod and
timeEndPeriod functions to increase
the precision of timeGetTime. If you
do so, the minimum difference
between successive values re-
turned by timeGetTime is only as
large as the minimum period value
set using timeBeginPeriod and
timeEndPeriod. You can use the
functions QueryPerformanceCounter
and QueryPerformanceFrequency to
measure short time intervals at a
high resolution.

For timeGetTime on Windows 95
the default precision is 1 millisec-
ond. In other words, it can return
successive values that differ by
just 1 millisecond. This is true no
matter what calls have been made
to the timeBeginPeriod and
timeEndPeriod functions.

Algorithms
And Data Structures
With every application that needs
a performance boost, we first need
to find the bottle-neck. You just
don’t simply start to optimise a
program, you need to focus your
attention to a specific target. Once
we’ve found the bottle-necks in our
application, the next thing we must

➤ Figure 3

➤ Figure 4

May 1996 The Delphi Magazine 19

do is check the algorithm or data
structures used. The chances are
that an inefficient one is used and
we can speed up the application by
an order of magnitude by imple-
menting a more efficient one.

Remember the example I used
with Delphi 1.0? The component
TDirectoryOutline (on the Samples
page of the Component Palette)
uses a linear search algorithm,
with efficiency O(N*N), in proce-
dure BuildOneLevel, to place new
nodes in alphabetic order under
their parent (see Figure 5 for the
Turbo Profiler report showing the
massive time usage in this section).
Searching a directory with 100
subdirectories took more than 10
seconds, which is not acceptable,
of course.

Although this sample compo-
nent was updated to reflect the 32-
bitness of Delphi 2.0 the search
algorithm was not changed. We can
solve the problem again by replac-
ing the offending lines with a call to
a binary searching algorithm,
which results in a O(N * log N)
performance instead of O(N*N).
Now, searching a directory with
100 subdirectories takes under a
second. Full source code for my
revised DIROUTLN.PAS is on the
subscribers’ disk with this issue.

Language Enhancements
The 32-bit Delphi ObjectPascal
language contains many new pow-
erful (and sometimes even danger-
ous!) features for programmers
who are concerned with efficiency.
I’ll focus on exceptions again,
showing in an example that they do
take a significant overhead when
triggered, and also on variants. In
future articles I’ll look at some
other Delphi 2.0 enhancements,
such as long strings, and their
performance impacts.

Exceptions
Delphi exceptions offer an excel-
lent way of detecting and handling
errors. My timings have shown that
the use of exceptions has no signifi-
cant effect on the performance of a
certain piece of code, as long as the
regular (non-exception) path is
followed. When an exception is
raised, I noticed a slight overhead.

But what the heck, I don’t mind
waiting just a little bit longer to get
an error message anyway.

This does mean, however, that
exceptions should not be used in
tight loops where the exception is
just part of the execution flow (like
reading a text file and raising an
“end-of-line” exception at the end
of each line). This kind of program-
ming can really slow down your
application, since for each
exception raised, an instance of
EException is created, your stack is
cleared and walked to the nearest
on except handler. For normal er-
ror detection and handling, excep-
tions are just fine, and often make
the code that much more readable!

For example: create a string grid
with a lot of rows and make the last
row the total of the values in the
other rows (in this column), by
using the code shown in Listing 1.

The mechanism of exception
handling takes time to execute,
which is the reason why, for an
almost empty grid, it takes a few
seconds before we can enter an-
other cell. It’s not the calculation of
the column totals, but the raising
and especially the handling of the
exceptions that takes a relatively
enormous amount of time. So, I
recommend you use exceptions to
indicate errors that must be
responded to, but never use them
in the normal flow of control.

Variants
Delphi 2.0 introduces variant types
to give you the flexibility to dy-
namically change the type of a vari-
able. This is useful when
implementing OLE automation or
certain kinds of database opera-
tions where the parameter types
on the server are unknown to your
Delphi-built client application.

A variant type is a 16 byte struc-
ture that has type information
embedded in it along with its value,
which can represent a string, inte-
ger, or floating-point value. In most
cases you can use a variant just as
you would any other type of
variable. When performing OLE
automation, variant types can
respond to method calls from the
OLE server.

Typecasting Variants
You can typecast a standard-type
expression into a variant or a
variant expression into a standard
type. If you have range-checking
turned on, casting a variant into a
value outside the range of the type
being cast raises an exception.
Note that using a variant inflicts a
lot of processing overhead. Even if
not converting, it must still access
the type information to check
whether or not it needs to convert.
Hence, only use variant types if
you need to, like for OLE stuff, and
never use them in common code.

0.0002 151 if RootNode.HasItems then {if has children, must alphabetise}
 begin
0.1655 146 TempChild := RootNode.GetFirstChild;
 { Dr. Bottle-neck: Linear Search applied: }
11.684 5326 while (TempChild <> InvalidIndex) and
 (Items[TempChild].Text < SearchRec.Name) do
12.076 5180 TempChild := RootNode.GetNextChild(TempChild);
0.1105 146 if TempChild <> InvalidIndex then
0.6892 132 NewChild := Insert(TempChild, SearchRec.Name)
0.0115 14 else NewChild := Add(RootNode.GetLastChild, SearchRec.Name);
0.0001 146 end

➤ Figure 5

for R:=1 to 12 do begin
 try
 Value := StrToFloat(Cells[Column,R]);
 except { Warning: will also get fired when the cell contains an empty ’’ }
 Value := 0
 end;
 Sum := Sum + Value
end;
Cells[Column,13] := FloatToStr(Sum)

➤ Listing 1

20 The Delphi Magazine Issue 9

32-Bit Assembly
As we’ve seen with the TDirectory-
Outline example, an efficient algo-
rithm or data structure can make a
difference of an order of magni-
tude. Furthermore, the new Delphi
language features are able to de-
crease code size or increase speed
and safety, although less dramati-
cally compared to algorithmic im-
provements. With the new
optimising back-end compiler and
linker we seldom need to step
down to the assembly level: the
compiler will outperform all but
the most ingenious assembler
hacker.

Furthermore, the inline state-
ment has now been removed in
Delphi 2.0, so it is now no longer
possible to write inline macros. I
guess they felt that the compiler
and linker already produce effi-
cient enough code, or they were
perhaps afraid that it would use
registers in a way that was unde-
tectable by the compiler so that
normal register optimisations

(values passed in registers) would
break because of it. Anyway, inline
is gone forever now, so we’d better
start writing good solid algorithms
in plain ObjectPascal again

Acknowledgements
A large part of this 32-bits effi-
ciency article was based on infor-
mation from chapter 18 (on
Optimisation) of the book The
Revolutionary Guide to Delphi 2,
published by WROX Press, ISBN
1-874416-67-2, available now from
your favourite bookseller (eg UK
Delphi Developer’s Group, email
100016.355@compuserve.com)!

Bob Swart (aka Dr.Bob on
http://www.pi.net/~drbob/) is a
professional software developer
using Delphi, Borland Pascal, C++,
HTML and Java. In his spare time
he likes to watch video tapes of
Star Trek Voyager and Deep Space
Nine with his 2-year old son Erik
Mark Pascal.

May 1996 The Delphi Magazine 21

	Delphi 2.0
	Linker Options
	Delphi 2.0 Optimisations
	Register Optimisations
	Call Stack Overhead Eliminations
	Eliminating Common Sub-Expressions
	Loop Induction Variables
	Code Elimination
	Finding Bottle-Necks
	Algorithms an d Data Structures
	Language Enhancements
	Exceptions
	Variants
	Typecasting Variables
	32-Bit Assembley
	Acknowledgements

